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FORMATION  FLYING  CONTROL OF MULTIPLE 
SPACECRAFT: GRAPH THEORETIC  PROPERTIES AND 

SWITCHING  SCHEMES 

M. Mesbahi*and F. Y. Hadaeght 
Jet  Propulsion  Laboratory 

California Institute of Technology 
Pasadena,  Ca 91109-8099 

Abstract 

We present several results on the leader-following 
(LF)  paradigm in the formation flying of  md#iple 
spacecraft in free space. In this direction, i b  
from elementary graph theory and linear matrix in- 
equalities are combined with logic-based switching 
to shed light on the various control designs which 
are feasible using the leader-following mechanism 
for various formation scenarios. . . .  
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1 Introduction I 
~, , .  

1.1 d 

Formation flying (FF)  has been  identified as an 
enabling technology  for many of the NASA's 21St 
century missions, among them,  the Space  Technol- 
ogy 3 and  the  Terrestrial  Planet Finder. Forma- 
tion flying  involves  flying a group of spacecraft in a 
particular  pattern while maintaining precise  (pos- 
sibly time varying) relative position, velocity, at- 
titude,  and angular velocity, with respect to each 
other [7], [14]. Since traditional spacecraft control 
is often concerned with measuring and  maintain- 
ing the  same  quantities for a single spacecraft with 
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respect to an inertial reference frame,  the analo- 
gous FF control and  estimation problems are often 
an order of magnitude more challenging than those 
encountered traditionally for a single spacecraft [2], 
[9], [16]. In order to make the FF control prob- 
lems at least similar to  the single spacecraft case, 
an approach based  on  leader-following has been  pro- 
posed by Wang and Hadaegh [15]. The basic idea 
in leader-following (LF) is to designate a particu- 
lar frame (or multiple frames) in the formation as 
the reference frame(s) of interest  and measure and 
control the  states of the rest of the formation with 
respect to them. 

The purpose of the present paper is twofold. First 
it is shown that LF can naturally be  given a graph 
theoretic formulation, and by doing so, we are able 
to obtain non-trivial results on some of its basic 
properties. We then derive control laws  for LF us- 
ing linear matrix inequalities (LMIs) [4]. These  con- 
trol laws are subsequently employed in the second 
part of the paper to propose logic-based switching 
schemes  for the  formation control. 

The outline of the paper is as follows.  In 52 the 
notation and the  mathematical preliminaries are 
presented, among them, certain facts on elementary 
graph theory, LMIs, hybrid and switching systems. 
$3 is devoted to leader-following and  its graph the- 
oretic interpretation. Simple control laws are then 
derived  in 94. In 95, $6, and $7, the control laws  de- 
rived  in $4 are combined with logic-based switching 
to propose a hybrid control architecture for leader 
reassignment, LF capturing (defined subsequently), 
and  dealing  with control saturations. 
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2 Notation and Preliminaries 
2.1 

In this section we first describe the  notation  and 
then provide some  elementary facta and  notions on 
graphs,  point mass dynamics, LMIs, and hybrid 
systems, which shall be  used in the subsequent sec- 
tions. 

2.2 Notation 

Formation flying consists of flying a group of apace- 
craft in a particular  pattern. To be able to express 
the  time evolution of the formation and design the 
corresponding control laws, it is convenient that a 
reference frame is attached to each spacecraft. We 
shall always assume that these reference frames  are 
induced from a dextral of three  orthonormal vec- 
tors. Let the formation have n spacecraft labeled 
as 1,2, .  . . , n. Let T' denote the reference frame at- 
tached to  the  i-th spacecraft; T' on the  other  hand 
shall  designate the inertial reference frahe. For the 
inertia  and  the  mass of the  i-th spacecraft we use I' 
and mi , respectively. The force and torque  acting 
upon i are denoted by and 9 ; for the mass 
normalized force we used ui .':= f The  time 
derivative with respect to T' shall be denoted by 
&; likewise, 5 will  be  used for the  time derivative 
with respect to 3' . /d denotes  the position of the 
origin of p with respect to 3 j  ; 2 is the position 
of the origin of p with respect to 3* . The desired 
position of the ori in of P with respect to FJ shall 
be denoted by rf , and by t$ when j = I. The 
velocity of the origin of 3' with respect to 7 1  , the 
velocity of the origin of 9 with respect to T' , the 
desired velocity of the origin of p with respect to 
Fj , and  the desired velocity of the origin of 7' with 
respect to 3' , shall be denoted by ug , vi , v y  , 
and ua , respectively. The vector [r' vi IT  shall be 
referred to as the  state of the  i-th spacecraft and 
will  be denoted by zi . Similar  notations  are used 
for the  attitude and  the  angular velocity of 7' with 
respect to 3 j  : qu and w u  are  the attitude and the 
angular velocity of T' with respect to 3" and t# 

and wy are the desired angular velocity and  atti- 
tude of with respect to Fj (refer to Figure 1). 
All other  notations are standard: R'' denotes the 
real Euclidean space of dimension n; ll . l loo and 11.11 
are used  for the infinity norm and the 2-norm for 

m' * 

Figure 1: Formation  Coordinates 

vectors and matrices. The cross product  matrix in- ' , ,  

duced by the vector z = [q zz z#' is the matrix, ; '': 

.>! ' . 

0 -23 2 2  

-22 2 1  0 
[z] := 

2.3 Elementary Dynamics: Inertial 
and Moving Frames 

The dynamics of a point  mass in an  inertial refer- 
ence frame is described by Newton second  law as 
3 = 6, where T ,  f ,  and m denote, respectively, 
the (inertial) position, the force, and  the mass of 
the point mass. If the  coordinate  frame where  po- 
sitions and velocities are measured is itself rotating 
or accelerating, then the equations of motion are 
modified to reflect such a motion. Recall that the 
first and  the second derivative of a vector A in F' 
and T' are related by the relation, 

dA d A  
dt dti 
- = -  +w' x A,  (2.1) 

where wi is the angular velocity of with respect 
to T' . In particular, . 

stating  that  the  rate of change of the angular veloc- 
ity is independent of the  frame of reference  where 
it is measured. 

Differentiating both sides of (2.1) with respect to 
F1 , we obtain, 

d 2 A   d 2 A  dw' - = y + - x A + 2 w i  X -  d A  
dta  dti  dti  dti 

+w' x (w' x A) .  (2.3) 
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In (2.3), the second, third,  and  fourth  terms on the 
right hand side of the equality sign, are referred to 
as the  angular, Coriolis, and centripetal accelera- 
tion, respectively. 

One can therefore write the equation of motion 
in the moving reference frame T' as, 

d3r hi 
~ + - ~ r + + * x - + + ~ x ( w ' x r )  
dti  dti  dti 

d r  

= -  (2.4) 
mi * 

2.4 LMIs and the State Feedback 
Design 

Let A E P"'" and B E RnXm and consider the 
linear time  invariant (LTI) system, 

i = A x + B u .  (2.5) 

Suppose that a state feedback is to be synthesized 
which stabilizes (in addition to some other perfor- 
mance criteria) the LTI system (2.5) via the Lya- 
punov inequality: find K and P such that, 

( A  + B K ) T P  + P ( A  + B K )  < 0,  P > 0. (2.6) 

The system of inequalities (2.6) as it is written, is a 
very difficult computational problem (in fact it is in 
the form a bilinear matrix inequality (BMI) [lo]). 
By a change of variable however, (2.6) can be writ- 
ten as an LMI. In  this  direction, let Q = P" and 
perform a congruent transformation on (2.6) by Q; 
then (2.6) is transformed  to, 

QAT + AQ + BY + YTBT < 0, Q > 0, (2.7) 

where we have set Y = K Q .  The inequality (2.7) 
is now readily solvable by a host of efficient numer- 
ical methods,  notably by the interior point meth- 
ods [12]. In fact,  the interior  point methods can be 
used to even optimize  an objective functional over 
the feasible set defined by (2.7), 

Q,Y,a 
min a (2.8) 

Q A ~  + AQ + BY + Y ~ B ~  < C ~ I ,  (2.9) 
Q > 0; (2.10) 

an optimization problem in the form of (2.8)-(2.9) 
is referred to as a semi-definite program (SDP) [12]. 

When deriving control laws for  each spacecraft in 
the  formation we shall consider the  situation where 

3 

the  control is always a function of the e m r  in the 
state of the spacecrafi; when this  error is in  fact the 
measured state by the controller, the LMI (2.7), or 
the SDP (2.8)-(2.10) can be conveniently used to 
come up with a stabilizing control law as outlined 
above. 

2.5 Hybrid and Switching Systems 

A hybrid dynamical system is a system whose time 
evolution is governed  by a combination of logical (or 
discrete), as well as continuous variables [l], [5], [6], ,,, 

[8], [ll], 1131. In particular, an autonomous hybrid ., 

system can be. represented in the form of, 

i = f(.(t), Q ( t ) ) ,  
4 )  = 4 4 t ) , d t - ) ) ,  

where z ( t )  E %", and a(t)  belongs to a discrete 
set JV (finite or  infinite). Here for each a, f( . ,a) : 
92" -+ 3" is a globally Lipschitz continuous function 
and u : %* x N 3 N describes the dynamics of the 
finite states. The notation a ( t - )  indicates the value 
of the finite states  a right before time t .  

Similar to an autonomous hybrid  system, a con- 
trolled hybrid system can be represented in the 
form, 

= f ( . ( t ) ,  b(t), u( t ) ) ,  (2.11) 
4 )  = v(t ( t ) ,  ~ ( t " ) ,  u(t)), (2.12) 

with the exception that u ( t )  E Rm and  the defi- 
nition of f and u are modified accordingly. It is 
not  hard to see that switching between various con- 
trollers is in fact a special class of controlled hybrid 
systems; we present few such switching examples 
in the context of formation flying later on in the 
paper. 

2.6 Elementary Graph Theory 
A graph G = (V, E )  consists of a finite nonempty 
set V of vertices  and a finite set of edges, E [3]. The 
cardinality of V is called the order of G. The graph 
G is called  undirected if every edge is an unordered 
pair of distinct vertices; if the edges correspond to 
an ordered  pair of distinct vertices then G is called 
directed. We shall  represent an edge in a directed 
graph with the end  vertices labeled as u and w ,  as 
[v ,  w];  similarly { v ,  w }  is used to denote the cor- 
responding edge  in an undirected graph. We say 
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A graph wirb 8 cycle 

Figure 2: Some Graph Theoretic Concepts 

that  the edge [u, w] (or {u,  w) )  is incident on u and 
w. A vertex which is not incident to any edge is 

. called'ieolated. Two vertices that are ~onneckxl by 
an edge are called adjacent verticea. The set of ad- 
jacent vertices of the vertex w is denoted by r(w).  

The degree of a vertex is the number of its ad- 
jacent vertices. A path from w l  to vk is the list of 
vertices [VI,  v2 , .  . . , vk]  such that [vi, w i + l ]  E E ,  for 
all i = 1, . . . , k - 1. If for every  two  vertices in a 
graph  there is a path connecting them,  then we call 
the  graph connected. The path b called simple if 
all of its vertices are  distinct. ,,A path is a cycle  if 
k > 1 and d = vk , and a simple cycle if in  addition, 
V I , .  . . ,  wk"l are  distinct.  A  graph without a cycle 
is called acyclic. 

We say that G' = (V' ,  E') is a subgraph of G = 
(V, E )  if V' C V and E' 5 E .  A tree is a connected 
graph that contains no cycles. A spanning tree of 
a graph G is a subgraph of G which is a tree and 
whose vertices are a subset of V ;  refez to Figure 2. 

3 The Leader-Following (LF) 
Graph 

Leader-following (LF) refers to  a scenario where a 
reference frame, or a set of reference frames are des- 
ignated such that  the desired spacecraft positions in 
the  formation  are expressed relative to them.' Be- 
fore we make the notion of LF more  precise, we 
state the following definitions. 

Definition 3.1 The  formation  pattern of a group 

' A  group of spacecraft whose  desired  positions  are ex- 
premed  with  respect to an inertial frame is thus M special 
c u e  of LF. 

of n spacecraft, 1 , .  . . , n, is the vector, 

P ( t )  := [r'(t), . . . , r"(t)]T E en. 

Definition 3.2 The  formation configuration of a 
group of n spacecrafl, 1 , .  . . , n, is  the  uecior, 

C ( t )  := [ r l ( t ) ,  v'(t), . . . , rn(t) ,  v"(t)JT E @. 

The desired formation pattern  and configuration at 
time t can naturally be  defined as, 

%(t) := [ri(t) ,  . . . , q(t)J*, and 
C d ( t )  := [r:(s), .j(t), - * I  r:(t), v:(t)P; 

such a specification requires that every spacecraft in , 

the formation has knowledge of its inertial position 
and velocity at all times. However, what often is 
of interest in the context of formation flying is the 
relaiive spacecraft positions and velocities. We are 
thus led to express P d ( t )  (or C d ( t ) )  in such a way 
that for a set of indices K C (1, . . . , n}, r f ( t )  is 
specified as a function of r', h(r'(t)), for all k E K 
and some 1 E (1,. , . , n} - K ,  where, 

h : P - + P ,  

is an invertible map which is twice differentiable on 
a given time interval of interest. Given that h is an 
affine map, rfs can be expressed as, 

r:(t) = Hklr'(t) + hkl(t), (3.13) 

for a matrix H" E Px3  and hk'(t) E e. In the 
subsequent sections we shall  mainly consider the 
situation where H is the identify mafriz, although 
all of the results can be extended to  the case where 
H is a nonsingular matrix. 

Definition 3.3 i is the  leader of j :f .Jd is expressed 
as h(r*), for some  invertible  map h : P -+ P 
which is twice  differenfiable on a given  time  interval 
of interest.? 

Note that LF is simply an assignment and reflects 
how one decides to represent the desired formation 
pattern and configuration. LF can conveniently be 
represented in terms of a graph as we  now proceed 
to show. 

2Although  the  piece-wise  diffeomorphicity of h is not nec- 
csaary for the  purpose of defining the leader-follower dgn- 
ment, this qualificationahall be used for derivingcontrollawr 
in $5. 
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Let GLF = (VLF, ELF) be a directed graph of or- 
der n, with VLF = { 1 , .  . . , n} and [i,31 E ELF if and 
only if i is the leader of j. We call GLF the  LF  graph 
of the  formation. Closely related to the  LF  graph is 
the  communication graph, Gc = (VC, Ec) .  Gc is a 
directed graph  with Vc = VLF; however [i ,  j ]  E EC 
if and only if i can send real valued  messages to j 
via a communication protocol. At times, it would 
be more convenient to make Gc undirected, partic- 
ularly when [i, j ]  E EC automatically implies that 
Li,4 E Ec. 

The LF assignment is closely related to another 
concept which shall be refened to dependency. 

Definition 3.4 j w dependent on i if d is a jrmc- 
tion of 2 .  

Dependency is the result of a situation where the 
control action of once spacecraft depends on the 
states (inertial  positions and velocities) of another 
(set of) spacecraft in the formation. 

Proposition 3.1 If i is 'the ,leader of j, then j is 
dependent on i. 

( I  

Definition 3.5 j is strongly dependent  'on i if d is 
a function of zi and ui. 

Associated with the set of dependent and strongly 
dependent vertices of GLF,  one can define the 
(directed) subgraphs GLFID and GLFISD, respec- 
tively. The graphs GLF, GLF/D, and GLF/SD, by 
the  virtue of being constructed from the leader- 
follower assignments and  the associated data de- 
pendencies, have various properties, few  of  which 
will be  stated  and proved  below.  Since in the sub- 
sequent sections we shall  mainly  study LF assign- 
ments which are defined  by GLFISD, we focus on 
the  properties of GLFISD rather  than GLF.  

Definition 3.6 The LF assignment is called  com- 
plete if  the  corresponding GLFISD is connected. 

Proposition 3.2 GLFISD associafed  with  a  com- 
plete LF assignment contains a  spanning  tree. 

Definition 3.7 A qualified subgraph of GLFISD is 
any of its spanning trees. 

5 

Proposition 3.3 For a complete LF aaaignment 
associated with  the formation of n spacecrrrfl, then 
are  at least n - 1 LF assignments. 

A complete LF assignment induces GLFISD which 
contains more than one qualified subgraphs. How- 
ever, one generally need only  one of these subgraphs 
for the purpose of implementing the formation con- 
trol law. We can thus consider a situation where 
there is a cust associated with every edge in GLF/SD 
(e.g., communication cost) and consider finding the . . . 
moet economical spanning tree. This topic shall 
be examined in more detail elsewhere, although it 
should be clear that can employ several existing al- 
gorithms for finding the  most economical quali6ed 
subgraph of GLFjsD. 

'2 1. . . .  ,. 

4 Simple Control Laws for LF 
In this section we go  over some simple control laws 
which are derived  based on  the  state feedback syn- 
thesis procedure discussed in 52.4 . These control 
laws can be used  for the control of the  formation 
pattern  and configuration under two  different  mea- 
surement scenarios. First, we consider the situa- 
tion where inertial measurements are available to 
both  the leader(s) and the follower(s); then we com- 
ment on the case  where the follower(s) measure- 
ments are done with respect to its own moving ref- 
erence frame. 

4.1 Inertial Reference Frame  Mea- 
surements 

Let i be  the &ne leader of j (with HIi = I )  during 
the  time interval [ t o , t j ) .  The desired position of j 
is thus expressed a s ,  

The error expression  for j is  then simply, 

d( t )  = ra(t) - d ( t )  = ri(t) - d( t )  + hU(t). 

Assuming that hU is twice differentiable on [ to ,  111, 
the above expression can be differentiated twice 
with  respect to the inertial reference frame to ob- 
tain (recalling that ui = $), 

d 2 d ( t )  d2 hu( t )  -= u'(l) - d ( t )  + - 
dt 2 dt2 . (4.14) 

By letting, 

d2hu(t) 
dt2 

u J ( 1 )  = u' + - + w ,  (4.15) 

American Institute of Aeronautics and Astronautics 



(4.24)-(4.25) can then be written a s ,  

i l ( 4  = &)I (4.28) 
id t )  = W l Z l ( t )  + W2.2(t) 

+ u'(t) - uJ(t) ,  (4.29) 

where, 

W1 = ~3%: - 11~311;I, and W2 = -[2~3]. 

Consider again the change of variable of the 
form, 

dlhu(t) d(t) = u'(t) + - 
612 + ii'(t), 

then, 

E' 

+ [ !I ] d(t). (4.30) 

Define the matrices Aj and B j  as suggested 
above. We can then proceed as in $4.1 and 
solve the LMI, 

AjQ + Q(AJ)T + BjY +y*(Bj)* < 0, (4.31) 
"> i:, *- Q > 0,(4.32) 

and  let, 

d ( t )  = U'(t) + 7 d2hii(t) + yQ-L.'(t), 

t o I t 5 t j ;  

note that only the definition of the matrix Aj 
has been modified from $5.1 to reflect the  fact 
that the error vector is now measured in the 
moving coordinate fiame attached to the fol- 
lower. 

2. j has non-constant angular velocity: If the an- 
gular velocity of j does not remain constant 
during  the LF, then we can  use  feedback  lin- 
earization to linearize the dynamics in such a 
way that  the LMI approach above  can still be 
adopted. For this purpose it suffices to  let, 

d = - 2 4 )  x 4 2 )  - ( 1 J ) - l ( d ( t )  
- z3( t )  x I'ts(t)) - Z3(t)(z3(1) X zz(t)),(4.33) 

and  let, 

d(1) = u'(2) + + d ( t )  + aJ(t); dt 2 

as before the expraion for d ( f )  is found be 
solving the LMI (4.18)-(4.19). 

In both scenarios ,considered above, the control law 
for the leader spacecraft i can also be baaed on the 
state feedback synthesis. For this purpose i t  suffices 
to  let, 

where the matrices Y and Q are found from the 
LMI (4.18)-(4.19) by letting, 

A i = [ o  O I  o ] ,  and B i = [  - I ] ;  0 

however z ia now simply d(t) - r'(t). 

5 Changing the LF Graph: 
Leadership Re-Assignment - ,..', 

The designation of the leader,  aside from its as- 
sociated hardware and software considerations and 
the required communication protocol, is rather ar- 
bitrary. It is thus of interest to consider a situation 
where the leader assignments are  time varying. In 
this direction, we would like to  study how the for- 
mation control performance is effected  by changing 
the LF  graph as, 

Consider for example a two spacecraft formation; 
let GiF and GL;' be  defined  by, 

G i F  corresponds to  the  situation where i is the 
leader of j and therefore (assuming an affine lead- 
emhip), 

&t) = .'(t) + h q t ) .  

In  this case the control law of $5.2 (when inertial 
measurements are available) can be implemented 
= I  

d2ri(t) 
ui(t)  = K%'(t) + - dt2 ' 

d2hji( t )  d(t)  = K J ( t )  + U ' ( t )  + 7, 
where t ' ( t )  is the  state  error observed by i at time 
2 .  Since h g ( t )  = -hj i ( t ) ,  for G;;' the control law 
can  be  expressed as, 

d2hU(t) 
dt u'(t) = Kz'( t )  + d(t)  + - = Kz'(1) 

d2hji( t )  
+uJ(t)  - - dt2 ' 

d 2 d  ( t )  d ( t )  = KtJ( t )  + ". 

7 
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Figure 
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3: Switching for  Leader  Reassignment 

6 LF Capturing 
We consider a situation where a free spacecraft is 
captured by an LF; translated in term of G L ~ ,  thia 
corresponds to the case where an isolated vertex ie 
c o ~ e ~ t e d  to GLF (Figure 3). Note that w i  have 
considered the  Situation where the isolated space- 
craft ie not ,*ed as a leader; if this is in fact the 
case, then' its control law will not be changed fram 
when the spacecraft was free. However, in thia lat- 
ter  situation,  the control law  for the new  followers 
of the new leader spacecraft changes  according to 
the procedure presented in 55. 

7 Control Saturations 
We  now examine the scenario whete the  j-th space- 
craft, j, following i in an LF., is+&o avoiding control 
saturation by switching betwee.4 two or  more con- 
trollers. In order to simplify tre presentation, we 
shall  assume in the rest of this section that, 

d2 hji ( t  ) 
dt 
" - 0, t o  5 t 5 t j .  

Recall that following the discussion of 54 (when  in- 
ertial measurements  are available), the  state error 
dynamics of j can be represented by, 

i ( t )  = ( A +  BK)r( t ) ,  

where, 

the  matrices Y and Q are found  from  solving the 
LMI, 

A Q + Q A T + B Y + Y T B T < O ,  Q > O .  

Let m denote  the 2-norm of the maximum allow- 
able maw normalized force  on  each spacecraft in 
the formation;  that is, we require that, 

114t)l l  5 m, to  I: 1 I t / *  (7.34) 

Note that although (7.34) imposes a constraint on 
the control vector  expressed  in the inertial frame, it 

directly translates into a,requirement expreseed in 
the spacecraft body franie via an orthogonal trans- 
formation (recall the invariance of the  Znorm under 
an orthogonal  transformation). Now since, 

d(t) = YQ"z(t) + u'(t), 

we require that, 

Ilu'(t) + Y~"z( t ) l l  ,< m, t o  5 t 5 t / .  (7.35) 

Note that although j has no prior knowledge about 
the  vduea of u' , it has to choose Q and Y such that 
(7.35) is satisfied. To cope  with thie lack of knowl- 
edge on the values of ui(t), we proceed to present a :: 
controller switching mechgnism which satides the' . 
control constraint ( 7 3 9 ,  in face of the lack of a pri- 
ori knowledge  of the d u e s  of u'(t) by the follower 
spacecraft. The only assumption which is required 
for the proposed approach to work is that, 

IIu'(t)ll < m, t o  5 t 5 t f .  

Starting from (7.35), we work instead with the 
stronger requirement, 

IIYQ"z(t)ll 5 rn - Ilu'(t)ll = mi ( t ) ,  t o  5 t 5 21. 

Let, 

€1, = { z  : z*Q,'z 5 l}, 

where Qt,  is a positive definite matrix which is cho- 
sen  such that z(0) belongs to Et,,  by solving the 
LMI, 

Suppose that we solve the LMI (7.36) in coqjunction 
with, 

AQt, + Qt,A + BYt, + KTBT < 0. (7.37) 

For small values of 61, if &to) = d(to + b t )  for t E 
[ t o ,  t o  + bt] and we use the controller Kt ,  = YtoQi,', 
then it would be the case that  to + 6 t )  E €to. In 
fact, if d(t) remains  constant, then z ( t )  E E,, for all 
t E [ to ,  t , ] .  In this situation, in order to guarantee 
that the saturation constraint is not violated, we 
can  augment the LMIs (7.36) and (7.37) with  an 
LMI H I ,  

(7.38) 

Now, the problem is that in general, one  cannot 
guarantee that z(t0 + a t )  E Et, ,  nor does the  above 
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discussion addresses the  situation where m'(1) does 
not remain constant. We are  thus led to incor- 
porate logic-based switching in conjunction with 
LMIa (7.36)-(7.38) to address  both of these scenar- 
ioe. Let, 

solve the SDP, 

min a (7.39) 
Qto,Yto,a 

AQ:, + QtoAT + B X ,  + &TBT < al ,  (7.40) 
8 r .  > 0, (7.41) 

a <  0. (7.44) 

We shall assume, without loss of generality, that 
the above SDP is feasible. Let us now proceed  from 
time t o  and consider the various scenarios  which can 
occur at  time t o  + 6 t :  

1. z( to  + St) E Et, and mi.(* has remained con- 
stant: In this case it is gu&mteed that, 

Il&o.t(to + W l  = IIKoQ$4to + 6t)ll 
"51 

time t o  + 6 t .  

2. %(to +at) E &so, however mi has chanhd over 
the interval [ f o , t o  + at]: For this case 

(a) We consider the trajectory as 
the ellipsoid Et,; however  we 
the controller gain Kt, by 

proceed in two directions: 

matrix Yto: 

min p I (7.45) 

< - ( % ! t o  + Q t o A T )  + P I ,  I (7.46) 

Y t o + 6 1 d  

BYto+6t  + & T + 6 t B T  ~ 

The  state feedback gain can  now  be set 
8 9 ,  I 

I 
K t o + 6 t  = Y i o + ~ t Q t , ' -  ((7.48) 

Proposition 7.1 The SDP (7.45)- 
(7.47) is feasible. 

(b) Given that rn'(to + 61) 2 mi, we might be 
able to find a smaller ellipsoid where the 
error %(to + st) belongs, by solving the 
following SDP: 

min a (7.49) 
Uto+~r,Yto+a,a 

a < 0, (7.54) 
Qto+6t 2 Qto- (7.55) 

Lemma 7.2 Given  that z ( t )  E €to for 
all t E [to,t,J, both of the above con- 
troller  switching  mechanism  result in a 
globally asymptotically  stable  hybrid dy- 
namical  system  which is guaranteed to  
satisfy the  control  constraint. 

(c) z(to + at) 4 €to,  whether or not mi hss 
remained constant: This scenario arises 
when the error at time t o  + at leaves the 
ellipsoid generated to bound it at time t o .  
For this case, we proceed to solve a new 
SDP, 

min a (7.56) 
Qto+a:,Yt0+rt,a 

AQro+6t  + Qto+atAT 4- BKo 
+6t + g+atBT < al ,  

(7.57) 
Qto+6t > 0, (7.58) 

a < 0, (7.61) 

in conjunction with another LMI which 
shall make the analysis of the resulting 
switching mechanism more manageable, 

0 < Qto+6t 5 Q t o .  (7.62) 

In this case we let, 

h'to+bt = y t o + 6 t Q G : 6 t *  

I 9 
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Figure 4: Ellipsoids for Control Swit4ing 

Using this scheme, we get a 
positive definite matrices, 

such that for all t 

Proposition 7.3 The control switchin mech- 
anism proposed  above  restrlts in a hyb  'd  dy- 
namical  system where the origin is its lobally 
asymptotically stable quilibrium point. ~ 

5 
8 Simulation Results ~ 

In this section we provide simulation results or few 
scenarios which demonstrate  the types of sw tching 
described in the paper. r 

Figure 6 depicts the scenario where the leadership 
assignment is changed between 
two-spacecraft formation; the follower 
2) both before and after the LF 
required to  track a circular path 
leader. 

......... _... ..'/ , ". ...,, 

Figure 6: Leadership reassignment 

Figure 7: LF capturing 

thus required to have a certain  deviation from the 
leader after the capturing time. Finally, Figures 8-9 
show an example where the follower's control law is 
switched in order to avoid control saturation as the 
result of a relatively high control  input used by the 
leader. 

9 Conclusion 
We presented several new results on the forma- 
tion flying control architecture based on the leader 
following strategy  using.  ideas &om graph theory, 

111111." 

Figure 7 demonstrates the LF capturing sc nario, 
where a free spacecraft is captured by the  LF  and is e Figure 8: Control saturation prevention 
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Figure 9: follower switches controller to void sat- 
uration at t = 5 sec' ? 
linear matrix inequalities, and logic-b 
ing. In this direction, the s 
vergence properties of the 
were given a particular  attention. 
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